Image compression with on-line and off-line learning
نویسندگان
چکیده
Images typically contain smooth regions, which are easily compressed by linear transforms, and high activity regions (edges, textures), which are harder to compress. To compress the first kind, we use a “zero” encoder that has infinite context, very low capacity, and which adapts very quickly to the content. For the second, we use an “interpolation” encoder, based on neural networks, which has high capacity, a finite-size context, and is trained off-line. The two encoders can be used separately or in combination. The zero-encoder surpasses JPEG2000 by 3.5% in overall compression, even though it is less efficient in high activity regions. Thanks to off-line training, the interpolation-encoder predicts high activity regions well, so it also matches the performance of JPEG2000, even though it does not use an arithmetic encoder and is less efficient in low activity regions. In both cases it is surprising that we match the stateof-the-art in image compression without using adaptive arithmetic encoding.
منابع مشابه
Document Image Dewarping Based on Text Line Detection and Surface Modeling (RESEARCH NOTE)
Document images produced by scanner or digital camera, usually suffer from geometric and photometric distortions. Both of them deteriorate the performance of OCR systems. In this paper, we present a novel method to compensate for undesirable geometric distortions aiming to improve OCR results. Our methodology is based on finding text lines by dynamic local connectivity map and then applying a l...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملContours Extraction Using Line Detection and Zernike Moment
Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...
متن کامل